
lif,l ilvi i =1 { 

Onset of Benard-Marangoni convection in 
a rotating liquid layer with nonuniform 
volumetric energy sources 
Pai-Chuan Liu 
Chinese Mi l i tary Academy, Department of Computer and Information Sciences, Fengshang, Taiwan, ROC 

The criteria for the onset of natural convection in a rotating liquid layer with nonuniform 
volumetric energy sources from absorbed thermal radiation are determined via linear 
stability analysis. The linearized perturbation equations are solved by using a numerical 
technique to obtain the eigenvalues that governs the onset of convection in a microgravity 
environment. The stability criteria are obtained in terms of the Marangoni number as 
function of the optical thickness. The influences of the Rayleigh number, Taylor number, 
Bond number, Crispation number, and Blot number on convection are examined in detail. 
These parameters provide a relationship between the critical Marangoni number and the 
Coriolis force, the buoyancy force, the interfacial tension, and the heat transport mecha- 
nisms. © 1996 by Elsevier Science Inc. 
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I n t r o d u c t i o n  

Convective motion in a horizontal liquid layer driven by surface 
tension gradients and buoyancy forces has attracted great atten- 
tion in the last several decades. Thermal convection in such a 
configuration can be found in many physical phenomena and 
various engineering applications in modern technology. These 
include many chemical processes (Davenport and King 1973), 
crystal growth (Chang and Wilcox 1975; Cutler 1977; Schwabe 
1981), materials processing in space (Carruthers 1977; Chun 
1980), geological (Knopoff 1969) and astrophysical (Tritton 1975) 
systems. The study of the mechanism of controlling undesirable 
convective motion generated in a fluid layer by both the buoy- 
ancy and surface tension forces in a microgravity environment 
has received a great deal of interest due to its application to the 
possibility of producing various new materials (Regel' 1988; Saghir 
1988). Some notable investigations of this problem have been 
undertaken by Pearson (1958), Nield (1964), Scriven and Stern- 
ling (1964), Smith (1966), Debler and Wolf (1970), Davis and 
Homsy (1980), and Lebon and Cloot (1981). Numerous factors 
affect the initiation of convective instability, such as shear stress, 
stratification, phase change, chemical reaction, electric and mag- 
netic fields, rotation, gravity, and interracial tension. The effect 
of the stabilization action of the Coriolis force due to rotation 
has been examined by Niiler and Bisshopp (1965), Vidal and 
Acrivos (1966), Namikawa et al. (1970), Friedrich and Rudraiah 
(1984), and Sarma (1979, 1985a, 1985b, 1987). 

With the exception of the limited results presented by 
Friedrich and Rudraiah (1984), the temperature gradient across 
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the fluid layer is assumed to be a constant in many of these 
aforementioned studies. They have examined this problem with- 
out the gravity effect for four distinct temperature profiles corre- 
sponding, respectively, to a liquid layer heated from below, a 
liquid layer cooled from above, and liquid layers with constant 
internal heat generation (which include a parabolic and an 
inverted parabolic profiles). However, the study assumed a zero 
interfacial curvature in the local balance conditions for the 
thermal flux, and tangential and normal stresses. In most physi- 
cal problems, a fiat two-fluid interface and a constant tempera- 
ture gradient across the liquid layer generally do not occur. In 
the present study, these restrictions are relaxed. 

This paper is aimed at studying the onset motion of 
Benard-Marangoni convection in a microgravity environment 
(10 - 6 -  10-3g). In contrast to earlier treatments, it is assumed 
that thermal convection is induced by both the buoyancy forces 
within the fluid and by temperature variations of the surface 
tension at the two-fluid interface; moreover, the basic unper- 
turbed temperature gradient across the liquid layer is no longer 
uniform. The nonuniformity is a result of absorption and pene- 
tration of external radiation in the liquid medium. The basic 
unperturbed temperature gradient in the liquid layer is essen- 
tially exponential and increases monotonically from the lower to 
the upper boundaries. The critical Marangoni number and wave 
number are determined in order to examine the influences of the 
nonuniform volumetric energy sources, the rotation constraint, 
the buoyancy and interracial tension mechanisms on Bernard- 
Marangoni convection. 

The present paper investigates the gravity and surface 
tension-driven convection in a rotating single-fluid layer with a 
free deformable surface with respect to time-independent pertur- 
bations. The study considers the case of convection with a 
nonzero disturbed wavy interracial curvature at the upper free 
two-fluid boundary. Oscillatory instability (Sarma 1985a) may 
occur when deformations are allowed at the interface. However, 
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the work also provides evidence to support the view that the 
incipient instability occurs in the stationary form rather than in 
the oscillatory modes for liquid layer with small rotation. The 
present study, therefore, focuses the attention only on stationary 
instability. Furthermore, similar to most of the previous works 
dealing with the effect of surface deformation in thermogravity 
and thermocapillary convection, the principle of exchange of 
stabilities is assumed valid without proof (Zeren and Reynolds 
1972; Cloot and Lebon 1985; Sarma 1985b, 1987; Garcia-Ybarra 
et al. 1987). 

In the following section, the disturbance equations for the 
study of onset of natural convection in a rotating liquid layer 
with internal nonuniform volumetric energy sources are pre- 
sented. The nonlinear temperature across the fluid layer is of 
particular interest in this study; therefore, a comprehensive dis- 
cussion of the steady-state temperature profile is discussed in 
detail. The equations governing the criteria for the onset of 
convection are solved numerically, and the eigenvalues for the 
stability problem are obtained by using the Chebyshev pseu- 
dospectral method. The solutions give the threshold values for 
the onset of stationary instability in terms of the Marangoni 
number and the corresponding wave number. In the final section, 
the combined effects of all the relevant influential parameters of 
the problem (e.g., optical thickness of the liquid layer, the Biot, 
Bond, Crispation, Rayleigh, and Taylor numbers) on these two 
critical numbers are examined. 

Formulation of the problem 

The geometry for the physical problem is shown in Figure 1. We 
consider an incompressible liquid layer of infinite horizontal 
extent which is confined in the region 0 < z < d + ~q*, where d is 
the mean thickness and -q*(x, y, t) is the local deflection of the 
upper surface from the mean. The lower rigid boundary is 
maintained at a constant temperature, while the upper boundary 
is exposed and exchanges heat with the ambient. The z-axis is 
taken as the vertical coordinate (perpendicular to the free sur- 
face) with the origin at the bottom rigid surface, and the x-axis is 
the horizontal coordinate (along the surface). The liquid is heated 
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Biot number, hd /k  ot 
Bond number, pgd2/o'o 
Crispation number, i~ o ct /tro d ,q 
specific heat at constant pressure, J /kg-K .q* 
mean thickness of the fluid layer, m O 
differential operator, d / d Z  
dimensionless steady-state temperature gradient K 
gravitational acceleration in the z-direction, m / s  2 
convective heat transfer coefficient at the fluid-air v 
interface, W/m2-°C p 
radiation intensity incident at the fluid-air interface, tr 
W / m  2-sr "r 
radiation intensity transmitted into the fluid, W/mE-sr %ff 
thermal conductivity, W/m-K ~b* 
Marangoni number, ( -  O~r/OT)o(ATd/~oet) 
normal unit vector at free upper surface 
steady-state volumetric heat generation, W / m  3 ~ 
external Rayleigh number, gfSATd3/vet 
internal Rayleigh number, g[5Itrd4/vetk 
ratio of external to internal Rayleigh number, 
Rae/Rai  b 
tangential unit vector at free upper surface 0 
temperature, K 1 
temperature disturbance, K 2 
temperature difference (T 1 - T2), K c 
Taylor number 2flkd2/vo e 
ambient temperature, K i 
velocity disturbance in the z-direction, m / s  k 
dimensionless amplitude function of the velocity 
disturbance in the z-direction, W =  w*d/et 
Cartesian coordinate in the z-direction, m 
dimensionless depth in the z direction, z / d  

thermal diffusivity, m2/s 
thermal expansion coefficient, K-1 
dimensionless interracial deflection, ~q*/d 
local deflection of the free surface from the mean, m 
dimensionless amplitude function of the temperature 
disturbance, O = T * / A T  
extinction coefficient, m-1 
dynamic viscosity, kg/m-s 
kinematic viscosity (}~/p), m2/s 
density, kg /m 3 
surface tension, kg/s  2 
optical thickness, Kd 
effective transmittance of the upper surface 
vorticity disturbance in the z-direction, rad /s  
dimensionless amplitude function of the vorticity 
disturbance, qb = dp*d2/et 
constant angular velocity about the z-axis, rad /s  

Subscripts 

undisturbed state 
reference state 
lower boundary 
upper boundary 
critical 
external 
internal 
unit vector in z direction 

580 Int. J. Heat and Fluid Flow, Vol. 17, No. 6, December 1996 



by a nonuniform volumetric energy source of strength Q',  due to 
external radiation incident at the upper free surface. The liquid 
layer is rotating about the vertical z-axis with a constant angular 
velocity ~k. In the formulation, the Boussinesq approximation is 
used by assuming that all fluid properties, such as viscosity, 
thermal conductivity, specific heat, thermal expansion coeffi- 
cient, are independent of temperature with the exception of the 
density in the body force term in the equation of momentum. 
Additionally, the surface tension is allowed to vary linearly with 
temperature. 

It is interesting to investigate whether the nonlinear tempera- 
ture profile, as a result of the external incident thermal radia- 
tion, can be maintained across the fluid layer without leading to 
convective motion. Therefore, the main purpose of this study is 
to formulate a linear stability problem using the conventional 
normal mode procedure and determine the condition for the 
onset of convection. Based on the conventional linear stability 
theory outlined by Chandrasekhar (1961), it is assumed that the 
field variables undergo infinitesimal disturbances. The linearized 
dimensionless equations governing the z-component of the veloc- 
ity, the vorticity, and the temperature perturbations have been 
developed by many investigators in the past. Here we provide 
only the applicable goveming disturbance equations for the 
current study without repetition. The interested readers should 
refer to the studies by Sarma (1985a, 1985b, 1987) for more 
details. Note that the disturbance equations given in the afore- 
mentioned references are derived for only a linear temperature 
profile, f (Z)  = 1; therefore, these equations have been modified 
to accommodate the nonlinear temperature profile as required in 
this study. 

Disturbance equations 

The equations governing the marginal state are given as 

(D 2 - a2)2W - Ta .DW= Rai -a20  

(D 2 - a2)O = - f ( Z ) .  W 

(D 2 - a 2 ) ~  = - T a - W  

(1) 

(2) 

(3) 

Subject to the following boundary conditions: 

at Z = 0: 

W = 0 (4) 

DW = 0 (5) 

® = 0 (6) 

qb = 0 (7) 

at Z =  1: 

w =  0 (8) 

Dqb= 0 (9) 

DO + B i - [ O - f ( 1 ) . ~ ]  = 0 (10) 

(D 2 - a2)W+Ma'a2"[O-f(1) '~] = 0, (11) 

C r ' ( D a W  - 3.a2"DW) - a2-(a  2 + Bo +Ra i .C r ) "  ~ = 0 (12) 

Equations 4-9  are the familiar boundary conditions of the classi- 
cal Benard problem (Chandrasekhar 1961). They represent the 
velocity, thermal, and vorticity conditions at the boundaries. 
Equation 10 is the interfacial thermal condition which denotes 
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the fluid medium that exchanges heat with the environment. 
Boundary conditions 11 and 12 express the continuity of tangen- 
tial and normal stress at the interface. 

The parameters that control the stability of the fluid layer 
include the wave number a, Biot number Bi, Bond number Bo, 
Crispation number Cr, Marangoni number Ma, Taylor number 
Ta, optical thickness "r, external and internal Rayleigh numbers 
Ra e and Ra i. The relationship between the initial temperature 
profile and the Rayleigh numbers are shown later in this paper. 
The Biot number denotes the effect of heat transfer by conduc- 
tion to convection. The Bond number represents the measure- 
ment of the effect of interfacial gravity waves. The Crispation 
number is related to the degree of deformability of the upper 
surface. The Marangoni number measures the variation of the 
surface tension with the temperature. The Taylor number repre- 
sents the ratio of the Coriolis force to the viscous frictional force. 
The Rayleigh number is a measurement of the buoyancy force 
and the viscous force. 

The disturbance Equations 1-3, together with the homoge- 
neous boundary conditions 4-12 constitute an eigenvalue prob- 
lem. The nontrivial functions W, ®, and qb satisfy all of these 
conditions only if there exists a functional relationship so that 

F(a, Bi, Bo, Cr, Ma, Ra e, Rai, Ta, T) = 0 (13) 

The primary objective of this investigation is to determine the 
critical value of the Marangoni number and the corresponding 
wave number on the locus of states neutrality stable represented 
by the parametric space given by Equation 13. Also, the nonlin- 
ear temperature profile f (Z)  across the liquid layer needs to be 
examined and its effects on the convective motion need to be 
exploited. 

Steady-state temperature prof i le analysis 

In Equation 2, f (Z)  is the dimensionless temperature gradient 
across the liquid layer at the equilibrium condition. We assume 
that the temperature is uniform and constant throughout the 
boundary. The temperatures of the lower and upper boundary 
surfaces are designated as T 1 and T2, respectively. Thermal 
radiation with intensity Ii, , is normally incident at the interface. 
The liquid layer is assumed to be an absorbing and nonscattering 
medium. Emission is assumed to be negligible. The portion of 
the incident thermal radiative intensity that has penetrated and 
transmitted in the fluid layer is 

~, =~n'%, (14) 

where "ref f is the effective transmissivity of the interface surface. 
Thus, the amount of incident thermal radiation that has 
penetrated to a depth ( d - z )  can be written as (Yucel and 
Bayazitoglu 1979; Lam and Bayazitoglu 1988) 

Qr(z) = Itr' K' {exp[ - K" (d - z)]} (15) 

The volumetric rate of heat generation Qr, therefore, refers to 
that of the incident thermal radiation being penetrated and 
absorbed in the fluid layer. By incorporating the rate of volumet- 
ric heat generation in the governing steady-state energy equa- 
tion, one can solve for the steady-state temperature of the 
conduction regime from 

g2rb I t r -  K- { e x p [ - -  K" ( d  - z ) ] }  
+ = 0 (16) 

dz 2 k 
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subject to the boundary conditions 

Tb(0) = T 1 (17) 

Tb(d) = T2 (18) 

The solution of the above system yields the steady-state tempera- 
ture profile 

z ( Itr l (expt_K.(d_z)  ] 

+ [1 - exp(-  K ' d ) ] ( d )  + exp(-  K'd) ) (19) 

and the dimensionless steady-state temperature gradient across 
the fluid layer takes the form 

d drb 
f ( z )  AT dZ 

= l + R * . ( e x p [ - - r - ( 1 - Z ) ]  [1 -exp( - r ) ]}T  (20) 

where 

R a  e 
R *  ~ _ _ F  

Rai 

The dimensionless steady-state conduction temperature gradient 
(Equation 20) is shown in Figures 2a and b for "r = 1 and 10 and 
various values of the dimensionless R*. If there is no external 
thermal radiation incident at the upper boundary, R* = 0, Equa- 
tion 20 reduces to 

f (Z) = 1 (21) 

which represents a linear temperature profile across the fluid 
layer due to heating from below. 

Solution of the eigenvalue problem 

The interracial deflection -q can be eliminated from the differen- 
tial systems by the use of Equation (12). The stability problem is 
solved for a given steady-state conduction temperature gradient 
across the liquid layer by specifying the values of Bi, Bo, Cr, Ra e, 
Rag, and Ta for various values of the optical thickness T. The aim 
of the problem is to minimize the Marangoni number and the 
corresponding wave number for these particular physical param- 
eters. 

The mathematical model in terms of the disturbance equa- 
tions for the stability problem is represented by an eighth-order 
system of differential Equations 1-3. The eigensystem can be 
solved by the finite-difference or the Fourier-Galerkin methods. 
Due to the complexity of the basic flow (Equation 20), a numeri- 
cal method proposed by Yang (1990) is selected for determining 
the criteria for the onset of convection in this study. The tech- 
nique is based on the Chebyshev pseudospectral method (Canuto 
et al. 1988), which employed the Chebyshev polynomials and a 
special transformation function to convert the original differen- 
tial eigensystem to an algebraic eigensystem. The resulting gen- 
eralized eigensystem is then solved directly by using the QZ 
algorithm (Moler and Stewart 1973), which is available in the 
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IMSL package (Rice 1983) under the special routine named 
EIGZC. 

R e s u l t s  a n d  d i s c u s s i o n  

The criteria for the onset of Benard-Marangoni convection in a 
horizontal rotating fluid layer subjected to external thermal 
irradiation at the upper interface have been obtained by using 
the Chebyshev pseudospectral method. Recent studies in this 
similar topic (Sarma 1985a, 1985b, 1987) showed that convective 
instability occurs in stationary rather than in oscillatory modes 
under certain conditions. The current study focuses only on the 
stationary mode of convective instability with finite waves. In 
view of the large number of characteristic dimensionless parame- 
ters, a representative order of magnitude for these parameters 
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similar to those used by Sarma (1985b, 1987) and Sreenivasan 
and Lin (1978) were used in this study. As stated in the study 
performed by Sarma (1985b), the values of these parameters can 
be regarded as representative for experiments in an Earth labo- 
ratory on thin liquid layers (d ~ mm) and experiments in an 
orbital laboratory with thicker layers (d ~ cm, g ~ 10-4gearth) for 
metallic and semiconductor melts and silicone oils. The varia- 
tions in the critical Marangoni number Ma c with the optical 
thickness of the fluid layer are presented in this paper. The 
effects of internal heat generation, Coriolis force, buoyancy, and 
interfacial tension mechanisms on the critical Marangoni are 
subsequently discussed. 

To establish the accuracy of the Chebyshev pseudospectral 
method, a comparison with the results of previous studies was 
made. For a similar geometric configuration with the conditions 
of Cr = Bi = Bo = R* = Ta = 0, the present method predicted 
79.607 and 1.993 for Ma c a¢, respectively. Nield (1964) obtained 
identical results by using the Fourier series expansion technique. 
The agreement of these results substantiates the applicability of 
the Chebyshev pseudospectral method for determining the condi- 
tions leading to the onset of convective motions in a liquid layer. 

The goal of the present study is to investigate the effect of 
nonuniform temperature gradients on Benard-Marangoni insta- 
bility of a horizontal liquid layer. The threshold condition leading 
to the onset of convective motion is designated by the critical 
Marangoni number. The variation of Ma C with the optical thick- 
ness "r for various values of the Rayleigh, Taylor, Bond, Crispa- 
tion, and Biot numbers is presented. Note that the optical 
thickness "r is defined as the product of the absorption coeffi- 
cient and the thickness of the liquid layer for a nonscattering 
medium. 

As mentioned previously, the nonuniformity in the steady-state 
conduction temperature gradient across the liquid layer is due to 
the absorption of external thermal irradiation. The effects of 
thermal irradiation can be explained by referring to the steady- 
state temperature gradient across the liquid layer, as shown in 
Figures 2a and 2b. The steady-state dimensionless temperature 
gradients f(Z) are presented for various values of the external 
and internal Rayleigh number ratios (R* = R a e / R a  i) for T = 1, 
and 10. The external Rayleigh number Ra e is an indicator of the 
thermal irradiation strength. In general, the slope of the temper- 
ature gradient is directly proportional to the intensity of the 
external Rayleigh number. If R* = 0, f(Z) reduces to unity that 
corresponds to a liquid layer uniformly heated from below with 
no external thermal radiation incidence. For small optical thick- 
ness, Figure 2a, the incoming energy is absorbed throughout the 
layer. The temperature gradient corresponds to the case of 
uniform heat generation and deviates from unity with a smooth 
slope. However, the influence of the optical thickness on the 
temperature gradients has a more profound effect as it ap- 
proaches to the optically thick limit (see Figure 2b). As r >> 1, 
most of the radiative energy is absorbed in the upper strata. As a 
result, the temperature gradient is steep near the upper bound- 
ary and fiat near the bottom of the liquid layer. The upper 
stratum is more unstable than the lower region, which has a 
more uniform temperature. The critical Marangoni number 
should, therefore, first decrease with -r for small optical thickness 
and then increase with "r. Generally, the critical Marangoni 
number is almost parabolic in nature when plotted as a function 
of the optical thickness. This trend is observed in the results 
shown below. 

The Biot number Bi is a measurement of the effect of heat 
transfer due to conduction from the liquid layer at the interface 
to the convection in ambient gas. Figure 3 shows the influence of 
the Biot number on the critical Marangoni number. The convec- 
tive heat transfer coefficient h is directly proportional to the Biot 
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number. As h increases, the temperature variations at the upper 
surface become more smooth, and the change in surface tension 
becomes smaller, thus dampening the fluid motion. The critical 
Marangoni number, therefore, increases with the Biot number. 
The least stable situation exists when Bi = 0. This case corre- 
sponds to an insulated upper surface, and all incoming energy is 
retained and absorbed within the fluid layer. A destabilizing 
temperature gradient occurs throughout the layer, and the sys- 
tem becomes unstable. This aspect is further illustrated below. 

Most of the earlier work (Nield 1964; Vidal and Acrivos 1966; 
Namikawa et al. 1970; Friedrich and Rudraiah 1984) on the 
similar configuration is limited to a flat interface (Cr = 0), and 
thus the effect of the gravity wave can be eliminated in the 
analysis. However, as recently reported by Sarma (1985b, 1987), 
it is inappropriate to ignore the gravity effect in the linear model, 
because it predicts that the system is always unstable with respect 
to disturbances of small wave numbers and that there exists no 
critical Marangoni number. The Crispation and Bond numbers 
represent the measurement of the effects of interfacial curvature 
and interfacial gravity waves, respectively. The Crispation num- 
ber represents the degree of deformability of the free surface 
and is inversely proportional to the mean surface tension. The 
Bond number is the ratio of the buoyancy and the capillary 
forces. In the present study, we consider the coupled effects of 
the Crispation and Bond numbers in order to illustrate the 
significance of the interfacial curvature (Cr > 0) and of gravity 
waves (Bo > 0) on convection. For a fiat free surface without 
deflections (Cr = 0), only one single critical Marangoni number 
was observed for the present boundary conditions. However, two 
critical Marangoni numbers (with one zero and one nonzero 
critical wave number) were found along the neutral stability 
curve for wavy interface. These results agree with those of Smith 
(1966) and Sarma (1985b, 1987) when the presence of gravity 
waves is included in the model. A zero critical wave number (a c) 
suggests that convective instability sets in above a finite thresh- 
old value Ma c with infinite wavelength h (a = 2~/h). 

From a practical standpoint, it is always of interest to deter- 
mine the onset of instability in finite cellular forms. Therefore, 
the following discussion is limited to the conditions leading to 
the onset of convective motion with finite wave-length character. 
To examine the effects of nonzero interfacial curvature two 
values for the Bond number (0.01 and 0.05) and the Crispation 
number (10 -4 and 10 - 3  ) w e r e  selected. However, the results 
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show that  the stability characteristics are not sensitive to Bo as 
long as a finite critical wave number  (a~ >> 1) is selected. This 
can be explained by referring to the boundary condition given by 
Equation 12. The influence of the Bond number  on instability is 
minimal, because Bo is small compared to a~. For larger Bo 
similar to those used by Sreenivasan and Lin (1978), Ma c and a~ 
are shown in Figure 4a and b. Although the scale is compressed, 
the results indicate a stabilizing effect of the interracial gravity 
waves. 

The Crispation number  is inversely proportional to the sur- 
face tension cr and becomes zero as cr--, o0. As the surface 
tension decreases, less energy is required to generate convection. 
The critical Marangoni  number  decreases with increasing Crispa- 
tion number.  The influence of the Crispation number  on the 
critical Marangoni number  and the corresponding wave number  
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Figure 5b The ef fect  of the  upper sur face de fo rmab i l i t y  on 
the  cr i t ical  Ma rangon i  numbe r  

is shown in Figures 5a and b. The results for Cr = 0 and 10 -4 are 
essentially unchanged. However, for Cr = 5 × 10 -4 and 10 -3, the 
entire behavior is profoundly influenced by interracial curvature 
waves. It is also noticed that  the critical wave number  is also 
affected by the surface deflection. As the Crispation number  
increases, the convective motion has a tendency to set in with 
infinite wavelength. When the Crispation number  is larger than 
10 -3, the existence of a nonzero critical Marangoni number  is no 
longer assured. It can be concluded that  the approximation 
Cr = 0 is realistic for wave numbers  that are not too small 
(a >> 1) and Crispation numbers less than 10 -2. Outside these 
limits, the assumption of zero gravity waves in a linear model is 
not acceptable, because it predicts that  the system is always 
unstable with small wave numbers disturbances and no critical 
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Marangoni number. These findings are in accord with the con- 
clusions of Clout and Leben (1985). 

The Taylor number Ta represents the ratio of the Coriolis 
force to the viscous frictional force. The stabilizing effect of 
rotation on the critical Marangoni number and the correspond- 
ing wave number is shown in Figures 6a and b. The Coriolis force 
is unconditionally stabilizing, and Ma c increases monotonically 
with the Taylor number. 

The effects of external incident thermal irradiation on the 
critical Marangoni number are shown in Figure 7. The external 
and internal Rayleigh numbers Ra e and Rai are the nondimen- 
sional measurement of the magnitudes of the radiative intensity 
incidence at the upper surface and the temperature difference 
across the liquid layer, respectively. As shown in Figure 7, the 
critical Marangoni number decreases with increasing the incident 
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thermal radiation intensity. Because most of the radiative energy 
is absorbed in the upper strata as -r >> 1, the temperature gradi- 
ent is steep near the upper boundary and flat near the bottom of 
the liquid layer. The upper stratum is more unstable than the 
lower region, which has a more uniform temperature. Therefore, 
the critical Marangoni number is first decreased with ~ for small 
optical thickness and then increased with large "r. 

Finally, calculations are made to determine the effect of the 
internal Rayleigh number Ra i on the critical Marangoni number. 
Rai is also a measure of the buoyancy force and the viscous 
force, and the Marangoni number represents the ratio of the 
surface tension force to viscous force. The ratio of these two 
dimensionless numbers provides an estimate of the relative mag- 
nitude of the surface tension and the buoyancy forces. The 
surface tension force becomes dominant compared to the buoy- 
ancy force in a microgravity environment. For low internal 
Rayleigh number, the effect on the Marangoni number is negligi- 
ble. However, it is evident from Figure 8 that large internal 
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Figure 8 The e f fec t  o f  t he  in te rna l  buoyancy  fo rce  on the  
cr i t ica l  Marangoni number  
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Rayleigh number plays a very significant role in ground-based 
convective instability experiment. 

Final remarks 

The conditions leading to the onset of Benard-Marangoni  con- 
vective instability in a horizontal rotating fluid layer subjected to 
external thermal irradiation at the upper two-fluid interface has 
been determined by using the Chebyshev pseudospectral method. 
The dependence of the stability characteristics on the optical 
thickness, the Rayleigh, Taylor, Bond, Crispation, and Biot num- 
bers is investigated. However, neither the long-wave nor the 
oscillatory mode have been considered in this study. They may 
play important roles in the present configuration. Further study 
is necessary to clarify their roles in convection. 
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